首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1115篇
  免费   135篇
  国内免费   1篇
  2021年   12篇
  2020年   11篇
  2019年   14篇
  2018年   18篇
  2017年   10篇
  2016年   14篇
  2015年   52篇
  2014年   45篇
  2013年   52篇
  2012年   67篇
  2011年   60篇
  2010年   34篇
  2009年   34篇
  2008年   53篇
  2007年   50篇
  2006年   58篇
  2005年   54篇
  2004年   55篇
  2003年   43篇
  2002年   40篇
  2001年   35篇
  2000年   48篇
  1999年   29篇
  1998年   19篇
  1997年   11篇
  1996年   17篇
  1995年   19篇
  1994年   12篇
  1993年   9篇
  1992年   31篇
  1991年   16篇
  1990年   27篇
  1989年   9篇
  1988年   20篇
  1987年   18篇
  1986年   24篇
  1985年   9篇
  1984年   13篇
  1983年   9篇
  1982年   9篇
  1981年   5篇
  1980年   6篇
  1979年   10篇
  1978年   11篇
  1977年   9篇
  1975年   4篇
  1974年   8篇
  1973年   6篇
  1972年   4篇
  1969年   4篇
排序方式: 共有1251条查询结果,搜索用时 15 毫秒
71.
The photosynthetic apparatus contains several protein complexes, many of which are regulated by environmental conditions. In this study, the influences of microgravity on PSI and PSII in Brassica rapa plants grown aboard the space shuttle were examined. We found that Brassica plants grown in space had a normal level of growth relative to controls under similar conditions on Earth. Upon return to Earth, cotyledons were harvested and thylakoid membranes were isolated. Analysis of chlorophyll contents showed that the Chl a/b ratio (3.5) in flight cotyledons was much higher than a ratio of 2.42 in the ground controls. The flight samples also had a reduction of PSI complexes and a corresponding 30% decrease of PSI photochemical activity. Immunoblotting showed that the reaction centre polypeptides of PSI were more apparently decreased (e.g. by 24-33% for PsaA and PsaB, and 57% for PsaC) than the light-harvesting complexes. In comparison, the accumulation of PSII complex was less affected in microgravity, thus only a slight reduction in D1, D2 and LHCII was observed in protein blots. However, there was a 32% decrease of OEC1 in the flight samples, indicating a defective OEC subcomplex. In addition, an average 54% increase of the 54 kDa CF1-beta isoform was found in the flight samples, suggesting that space-grown plants suffered from certain stresses, consistent with implications of the increased Chl a/b ratio. Taken together, the results demonstrated that Brassica plants can adapt to spaceflight microgravity, but with significant alterations in chloroplast structures and photosynthetic complexes, and especially reduction of PSI and its activity.  相似文献   
72.
The alpha-ketoamide warhead (e.g., 15) was found to be a practical replacement for aliphatic aldehydes in a series of HCV NS3.4A protease inhibitors. Structure-activity relationships and prime side optimization are discussed.  相似文献   
73.
The purpose of this paper is to suggest that the prominence of Haldane's explanation for enzyme catalysis significantly hinders investigations in understanding enzyme structure and function. This occurs despite the existence of much evidence that the Haldane model cannot embrace. Some of the evidence, in fact, disproves the model. A brief history of the explanation of enzyme catalysis is presented. The currently accepted view of enzyme catalysis--the Haldane model--is examined in terms of its strengths and weaknesses. An alternate model for general enzyme catalysis (the Shifting Specificity model) is reintroduced and an assessment of why it may be superior to the Haldane model is presented. Finally, it is proposed that a re-examination of many current aspects in enzyme structure and function (specifically, protein folding, x-ray and NMR structure analyses, enzyme stability curves, enzyme mimics, catalytic antibodies, and the loose packing of enzyme folded forms) in terms of the new model may offer crucial insights.  相似文献   
74.
The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the α-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel–D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections.  相似文献   
75.
76.
Donor APCs are required for maximal GVHD but not for GVL   总被引:23,自引:0,他引:23  
Graft-versus-host disease (GVHD) is a major source of morbidity in allogenic stem cell transplantation. We previously showed that recipient antigen-presenting cells (APCs) are required for CD8-dependent GVHD in a mouse model across only minor histocompatibility antigens (minor H antigens). However, these studies did not address the function of donor-derived APCs after GVHD is initiated. Here we show that GVHD develops in recipients of donor major histocompatibility complex class I-deficient (MHC I(-)) bone marrow. Thus, after initial priming, CD8 cells caused GVHD without a further requirement for hematopoietic APCs, indicating that host APCs are necessary and sufficient for GHVD. Nonetheless, GVHD was less severe in recipients of MHC I(-) bone marrow. Therefore, once initiated, GVHD is intensified by donor-derived cells, most probably donor APCs cross-priming alloreactive CD8 cells. Nevertheless, donor APCs were not required for CD8-mediated graft-versus-leukemia (GVL) against a mouse model of chronic-phase chronic myelogenous leukemia. These studies identify donor APCs as a new target for treating GVHD, which may preserve GVL.  相似文献   
77.
Although considerable progress has been made towards characterizing virus assembly processes, assignment of the site of tegumentation and envelopment for human cytomegalovirus (HCMV) is still not clear. In this study, we examined the envelopment of HCMV particles in human lung fibroblasts (HF) HL 411 and HL 19, human umbilical vein endothelial cells, human pulmonary arterial endothelial cells, and arterial smooth muscle cells at different time points after infection by electron microscopy (EM), immunohistochemistry, and confocal microscopy analysis. Double-immunofluorescence labeling experiments demonstrated colocalization of the HCMV glycoprotein B (gB) with the Golgi resident enzyme mannosidase II, the Golgi marker TGN (trans-Golgi network) 46, and the secretory vacuole marker Rab 3 in all cell types investigated. Final envelopment of tegumented capsids was observed at 5 days postinfection by EM, when tegumented capsids budded into subcellular compartments located in the cytoplasm, in close proximity to the Golgi apparatus. Immunogold labeling and EM analysis confirmed staining of the budding compartment with HCMV gB, Rab 3, and mannosidase II in HL 411 cells. However, the markers Rab 1, Rab 2, Rab 7, Lamp 1 (late endosomes and lysosomes), and Lamp 2 (lysosomes) neither showed specific staining of the budding compartment in the immunogold labeling experiments nor colocalized with gB in the immunofluorescent colocalization experiments in any cell type studied. Together, these results suggest that the final envelopment of HCMV particles takes place mainly into a Golgi-derived secretory vacuole destined for the plasma membrane, which may release new infectious virus particles by fusion with the plasma membrane.  相似文献   
78.
Bi-allelic-inactivating mutations of the VHL tumor suppressor gene are found in the majority of clear cell renal cell carcinomas (VHL(-/-) RCC). VHL(-/-) RCC cells overproduce hypoxia-inducible genes as a consequence of constitutive, oxygen-independent activation of hypoxia inducible factor (HIF). While HIF activation explains the highly vascularized nature of VHL loss lesions, the relative role of HIF in oncogenesis and loss of growth control remains unknown. Here, we report that HIF plays a central role in promoting unregulated growth of VHL(-/-) RCC cells by activating the transforming growth factor-alpha (TGF-alpha)/epidermal growth factor receptor (EGF-R) pathway. Dominant-negative HIF and enzymatic inhibition of EGF-R were equally efficient at abolishing EGF-R activation and serum-independent growth of VHL(-/-) RCC cells. TGF-alpha is the only known EGF-R ligand that has a VHL-dependent expression profile and its overexpression by VHL(-/-) RCC cells is a direct consequence of HIF activation. In contrast to TGF-alpha, other HIF targets, including vascular endothelial growth factor (VEGF), were unable to stimulate serum-independent growth of VHL(-/-) RCC cells. VHL(-/-) RCC cells expressing reintroduced type 2C mutants of VHL, and which retain the ability to degrade HIF, fail to overproduce TGF-alpha and proliferate in serum-free media. These data link HIF with the overproduction of a bona fide renal cell mitogen leading to activation of a pathway involved in growth of renal cancer cells. Moreover, our results suggest that HIF might be involved in oncogenesis to a much higher extent than previously appreciated.  相似文献   
79.
Certain phenolic compounds represent a distinct class of Photosystem (PS) II QB site inhibitors. In this paper, we report a detailed study of the effects of 2,4,6-trinitrophenol (TNP) and other phenolic inhibitors, bromoxynil and dinoseb, on PS II energetics. In intact PS II, phenolic inhibitors bound to only 90-95% of QB sites even at saturating concentrations. The remaining PS II reaction centers (5-10%) showed modified QA to QB electron transfer but were sensitive to urea/triazine inhibitors. The binding of phenolic inhibitors was 30- to 300-fold slower than the urea/triazine class of QB site inhibitors, DCMU and atrazine. In the sensitive centers, the S2QA state was 10-fold less stable in the presence of phenolic inhibitors than the urea/triazine herbicides. In addition, the binding affinity of phenolic herbicides was decreased 10-fold in the S2QA state than the S1QA state. However, removal of the oxygen-evolving complex (OEC) and associated extrinsic polypeptides by hydroxylamine (HA) washing abolished the slow binding kinetics as well as the destabilizing effects on the charge-separated state. The S2-multiline electron paramagnetic resonance (EPR) signal and the ‘split’ EPR signal, originating from the S2YZ state showed no significant changes upon binding of phenolic inhibitors at the QB site. We thus propose a working model where QA redox potential is lowered by short-range conformational changes induced by phenolic inhibitor binding at the QB niche. Long-range effects of HA-washing eliminate this interaction, possibly by allowing more flexibility in the QB site.  相似文献   
80.
The pigment composition of the light-harvesting complexes (LHCs) of higher plants is highly conserved. The bulk complex (LHCIIb) binds three xanthophyll molecules in combination with chlorophyll (Chl) a and b. The structural requirements for binding xanthophylls to LHCIIb have been examined using an in vitro reconstitution procedure. Reassembly of the monomeric recombinant LHCIIb was performed using a wide range of native and nonnative xanthophylls, and a specific requirement for the presence of a hydroxy group at C-3 on a single beta-end group was identified. The presence of additional substituents (e.g. at C-4) did not interfere with xanthophyll binding, but they could not, on their own, support reassembly. cis isomers of zeaxanthin, violaxanthin, and lutein were not bound, whereas all-trans-neoxanthin and different chiral forms of lutein and zeaxanthin were incorporated into the complex. The C-3 and C-3' diols lactucaxanthin (a carotenoid native to many plant LHCs) and eschscholtzxanthin (a retro-carotenoid) both behaved very differently from lutein and zeaxanthin in that they would not support complex reassembly when used alone. Lactucaxanthin could, however, be bound when lutein was also present, and it showed a high affinity for xanthophyll binding site N1. In the presence of lutein, lactucaxanthin was readily bound to at least one lutein-binding site, suggesting that the ability to bind to the complex and initiate protein folding may be dependent on different structural features of the carotenoid molecule. The importance of carotenoid end group structure and ring-to-chain conformation around the C-6-C-7 torsion angle of the carotenoid molecule in binding and complex reassembly is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号